Para ampliar el ejemplo de velocidad relativa introducido a propósito del experimento de Michelson-Morley se pueden comparar dos situaciones. En una de ellas, una persona A avanza hacia delante con una velocidad v en un tren que se mueve a una velocidad u. La velocidad de A con respeto a un observador B situado en el andén es V = u + v. Si el tren está parado en la estación y A avanza hacia delante con una velocidad v mientras el observador B camina en sentido opuesto con velocidad u, la velocidad relativa de A respecto a B sería exactamente la misma que en el primer caso. En términos más generales, si dos sistemas de referencia se mueven uno respecto del otro a velocidad constante, las observaciones de cualquier fenómeno realizadas por un observador en cualquiera de los sistemas son físicamente equivalentes. Como ya se indicó, el experimento de Michelson-Morley no logró confirmar esta simple suma de velocidades en el caso de un haz de luz: dos observadores, uno de los cuales estaba en reposo y el otro avanzaba hacia una fuente de luz a velocidad u, midieron el mismo valor de la velocidad de la luz, que suele simbolizarse con la letra c.
Einstein incorporó la invariancia de c a su teoría de la relatividad. La teoría también exigió un cuidadoso replanteamiento de los conceptos de espacio y tiempo, y puso de manifiesto la imperfección de las nociones intuitivas sobre los mismos. De la teoría de Einstein se desprende que un reloj perfectamente sincronizado con otro reloj situado en reposo en relación con él se retrasará o adelantará con respecto al segundo reloj si ambos se mueven uno respecto del otro. Igualmente, dos varillas que tengan igual longitud cuando están en reposo tendrán longitudes distintas cuando una se mueva respecto a la otra. Las diferencias sólo son significativas cuando las velocidades relativas son comparables a c. El espacio y el tiempo están estrechamente ligados en un continuo de cuatro dimensiones: las tres dimensiones espaciales habituales y una cuarta dimensión temporal.
Dos consecuencias importantes de la teoría de la relatividad son la equivalencia entre masa y energía y el límite máximo a la velocidad de los objetos materiales dado por c. La mecánica relativista describe el movimiento de objetos cuyas velocidades son fracciones apreciables de c, mientras que la mecánica newtoniana sigue siendo útil para las velocidades propias de los movimientos de los objetos macroscópicos en la Tierra. En cualquier caso, ningún objeto material puede tener una velocidad igual o mayor a la velocidad de la luz; la masa m y la energía E están ligadas por la relación E = mc2. Como c es muy grande, el equivalente energético de la masa es gigantesco. La transformación de masa en energía resulta significativa en las reacciones nucleares, como las que tienen lugar en una central nuclear o en una bomba atómica, y en las estrellas, donde la liberación de cantidades ingentes de energía se ve acompañada de una pérdida significativa de masa.
– La teoría original de Einstein, formulada en 1905 y conocida como teoría de la relatividad especial o restringida, se limitaba a sistemas de referencia que se mueven a velocidad constante uno respecto del otro. En 1915, Einstein generalizó su hipótesis y formuló la teoría de la relatividad general, aplicable a sistemas que experimentan una aceleración uno con respecto al otro. Esta extensión demostró que la gravitación era una consecuencia de la geometría del espacio-tiempo, y predijo la desviación de la luz al pasar cerca de un cuerpo de gran masa como una estrella, efecto que se observó por primera vez en 1919. La teoría de la relatividad general, aunque no está tan firmemente establecida como la relatividad restringida, tiene una importancia decisiva para la comprensión de la estructura del Universo y su evolución (cosmología).